

Published on Web 03/11/2003

Probing Cooperative Effects in Bimetallic Clusters: Indications of C–N Coupling of CH₄ and NH₃ Mediated by the Cluster Ion PtAu⁺ in the Gas Phase Konrad Koszinowski, Detlef Schröder, and Helmut Schwarz*

Institut für Chemie der Technischen Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany

Received December 18, 2002; E-mail: Helmut.Schwarz@www.chem.tu-berlin.de

The Degussa process for the large-scale synthesis of hydrogen cyanide from methane and ammonia (reaction 1) is of considerable economic importance. Nevertheless, mechanistic knowledge on the elementary steps involved and possible cocatalysts in addition to platinum is poor.¹

$$CH_4 + NH_3 \xrightarrow{\langle Pt \rangle, 1500 \text{ K}} HCN + 3 \text{ H}_2$$
(1)

Recently, our group has shown that gaseous Pt^+ effects C-N bond coupling between CH_4 and NH_3 with the carbene $PtCH_2^+$ as a key intermediate.² Among the carbenes of several other late transition metals investigated, a particularly high reactivity with respect to C-N coupling was found for $AuCH_2^{+,2b}$ Unlike $PtCH_2^{+}$, however, $AuCH_2^+$ is not spontaneously formed in reaction of the bare metal cation with CH_4 . These observations aroused our interest in a system consisting of both metals and, thus, possibly combining their positive effects in terms of C-N coupling. Here, we report on the corresponding reactivity of $PtAu^+$ in comparison with Pt_2^+ , Au_2^+ , and Pt^+ as studied by Fourier transform ion-cyclotron resonance (FT-ICR) mass spectrometry.³⁻⁶

Like atomic $Pt^{+,7} Pt_2^+$ and also the larger clusters Pt_n^+ efficiently react with CH_4 under dehydrogenation, reaction 2.⁸

$$Pt_2^+ + CH_4 \rightarrow Pt_2CH_2^+ + H_2$$
(2)

The carbone thus formed, $Pt_2CH_2^+$, efficiently reacts with NH₃ by elimination of H₂ (reaction efficiency $\phi = 0.6$), reaction 3. This behavior seemingly resembles that of the monomer carbone $PtCH_2^+$ where the analogous reaction yields the aminocarbone PtC(H)-NH₂⁺.² However, in contrast to the aminocarbone bound to atomic Pt^+ , $[Pt_2,C,H_3,N]^+$ does not dehydrogenate a second NH₃ molecule but simply forms the adduct (reaction 4) in a rather inefficient process, presumably assisted by termolecular stabilization.

$$Pt_2CH_2^+ + NH_3 \rightarrow [Pt_2, C, H_3, N]^+ + H_2$$
 (3)

$$[Pt_2, C, H_3, N]^+ + NH_3 \rightarrow [Pt_2, C, H_6, N_2]^+$$
 (4)

A further distinction emerges upon isotopic labeling. Whereas $PtCD_2^+$ eliminates HD upon reaction with NH₃, exclusively D₂ is produced in the case of $Pt_2CD_2^+$, reaction 3a. Hence, formally the D atoms in $Pt_2CD_2^+$ are substituted for NH₃. Finally, collision-induced dissociation (CID) of $[Pt_2,C,H_3,N]^+$ yields Pt_2C^+ as the only product detected at various collision energies, reaction 5.

$$Pt_2CD_2^+ + NH_3 \rightarrow [Pt_2, C, H_3, N]^+ + D_2$$
 (3a)

$$[Pt_2, C, H_3, N]^+ \rightarrow Pt_2C^+ + NH_3$$
(5)

Both reactions 3a and 5 do not indicate that C–N bond coupling is accomplished in $[Pt_2,C,H_3,N]^+$, but rather suggest that this species is a simple adduct of the carbide Pt_2C^+ and intact NH₃, that is, $Pt_2C^+\cdot NH_3$. As the larger clusters Pt_n^+ , n = 3-5, display a reactivity analogous to reactions 3-5, we conclude that small cationic platinum clusters, in marked difference to atomic Pt⁺, do not mediate C–N coupling between CH₄ and NH₃. Likewise, Au₂⁺ fails in this respect because it does not dehydrogenate methane.⁹

A probe of the reactivity of PtAu⁺ requires a workable gas-phase synthesis of this bimetallic cluster. We found that heteronuclear clusters $Pt_mAu_n^+$ can be produced by laser desorption/ionization of a Pt-Au alloy (1:1) and subsequent supersonic expansion. However, a major complication for the reactivity studies with respect to PtAu⁺ arises from the presence of Pt₂⁺, which, like Au₂⁺, is co-generated along with the mixed dimer. Namely, the broad isotope distribution characteristic of Pt leads to massive overlap between PtAu⁺ and Pt₂⁺ isotopomers (Figure 1a), e.g. ¹⁹⁵Pt¹⁹⁷Au⁺ is sumperimposed by 196Pt2+ and 194Pt198Pt+. The differences between the exact masses of these ions are far too small for the application of selective ion-ejection techniques. Fortunately, separation is feasible by the different reactivities of Pt₂⁺ and PtAu⁺ toward pulsed-in oxygen. Whereas Pt2+ is efficiently converted to Pt+ concomitant with loss of neutral PtO₂, both the PtAu⁺ and the Au₂⁺ cation⁹ do not react at all. After this chemical separation from Pt₂⁺ (Figure 1b, <1% isobaric Pt_2^+ left compared to $PtAu^+$), the ¹⁹⁵Pt¹⁹⁷Au⁺ isotopomer is easily selected by ejection of all remaining ions (Figure 1c).⁶ Accordingly, the reactivity of this species can be studied without any interference by other ions.¹⁰

Similarly to Pt_2^+ , but unlike Au_2^+ , $PtAu^+$ efficiently dehydrogenates CH_4 ($\phi = 0.3$), reaction 6.

$$PtAu^{+} + CH_4 \rightarrow PtAuCH_2^{+} + H_2$$
(6)

The heterometallic carbene $PtAuCH_2^+$ reacts with NH_3 under loss of H_2 , reaction 7, in formal analogy to the corresponding reaction of $Pt_2CH_2^+$. The ionic product then undergoes consecutive reactions with a second NH_3 molecule, reactions 8 and 9.

$$PtAuCH_2^+ + NH_3 \rightarrow [Pt,Au,C,H_3,N]^+ + H_2 \qquad (7)$$

$$[Pt,Au,C,H_3,N]^+ + NH_3 \rightarrow [Pt,Au,C,H_4,N_2]^+ + H_2$$
 (8)

$$\rightarrow [Pt,C,H_5,N_2]^+ + AuH \qquad (9)$$

The dehydrogenation observed in reaction 8 implies an activation of NH₃ that is inconsistent with [Pt,Au,C,H₃,N]⁺ being a simple adduct of a PtAuC⁺ entity and molecular NH₃. Instead, such a complex should only undergo degenerate ligand exchange and, if termolecular stabilization is feasible, association with a second NH₃ molecule, as Pt₂C⁺•NH₃ does in reaction 4. Behavior analogous to reaction 8, however, is observed for the aminocarbene PtC(H)NH₂⁺ formed from atomic Pt⁺ in the presence of CH₄ and NH₃.² This observation is a first indication that the reactivity of PtAu⁺ resembles that of Pt⁺ rather than of Pt₂⁺. Similarly, the second product channel, reaction 9, brings about degradation of the metal core by loss of neutral AuH and, thus, does not agree with a PtAuC⁺•NH₃ structure, either.

Figure 1. Mass range m/z = 380-404 (a) prior to reaction with O₂, (b) after reaction with O₂, and (c) after reaction with O₂ and ion ejection. The m/z values of the different isotopomers with significant abundance are 388–394 for Pt₂⁺, 391, 392, 393, and 395 for PtAu⁺, and 394 for Au₂⁺.

Further mechanistic insight is achieved by labeling. Reaction of $PtAuCD_2^+$ with NH_3 gives a mixture of $[Pt,Au,C,H_3,N]^+$, $[Pt,-Au,C,H_2,D,N]^+$, and $[Pt,Au,C,H,D_2,N]^+$ in a ratio 1:1.4 (±0.2): 1.1 (±0.2), reactions 7a-c.

 $PtAuCD_{2}^{+} + NH_{3} \rightarrow [Pt,Au,C,H_{3},N]^{+} + D_{2}$ (7a)

 \rightarrow [Pt,Au,C,H₂,D,N]⁺ + HD (7b)

 \rightarrow [Pt,Au,C,H,D₂,N]⁺ + H₂ (7c)

Reactions 7b and c clearly demonstrate activation of NH₃. Once again, PtAu⁺ behaves differently from Pt₂⁺, but similarly to Pt⁺. For the latter, only the analogue of HD elimination 7b was observed,² however, whereas also losses of D₂ and H₂ occur in the reaction of PtAuCD₂⁺ and NH₃. This points to an equilibration of all H and D atoms in the course of the reaction. For a completely statistical distribution, a ratio of 1:6:3 would be expected for reactions 7a-c. Experiment finds a much higher fraction of 7a which may be rationalized by some contribution of simple D₂/NH₃ substitution exclusively leading to PtAuC+•NH₃. This second product channel would correspond to the reactivity of $Pt_2CD_2^+$, suggesting that PtAu⁺ and Pt₂⁺ are related at least in this respect. The higher extent of reaction 7c than predicted by statistics is ascribed to the operation of kinetic isotope effects which are supposed to favor H₂ elimination in reaction 7c compared to losses of HD or D₂.

Finally, CID of $[Pt,Au,C,N,H_3]^+$ yields the fragments $PtAuC^+$ and $[Pt,Au,C,H,N]^+$ in a ratio of about 2:1 for a range of collision energies (at higher energies, occurrence of atomic Au^+ and Pt^+ is also observed), reactions 10 and 11. The dehydrogenation (reaction 11) is clearly inconsistent with a simple adduct $PtAuC^+ \cdot NH_3$. However, partial presence of such a species fragmenting solely according to reaction 10 is possible.

$$[Pt,Au,C,H_2,N]^+ \rightarrow PtAuC^+ + NH_2 \qquad (10)$$

$$\rightarrow$$
 [Pt,Au,C,H,N]⁺ + H₂ (11)

We conclude that $PtAu^+$, unlike Pt_2^+ , does mediate C-N coupling between CH_4 and NH_3 . The crucial effect of Au on reactivity can qualitatively be understood by noting that its closed 5d shell does not permit a strong interaction with the carbene moiety which, in turn, is available for combination with NH_3 . In contrast, the presence of two Pt atoms enhances binding to carbon, resulting in carbide formation rather than C-N coupling. A too-weak interaction between the carbene and the metal core is counterproductive as well, as seen in the case of Au_2^+ that does not effect dehydrogenation of CH_4 at all.

The observed similarities in the reactivities of PtAu⁺ and Pt⁺ further suggest that formation of an aminocarbene may not only

occur in the case of Pt^+ but also for $PtAu^+$, thus yielding (PtAu)C-(H)NH₂⁺ as a product of C–N coupling. However, a notable difference between $PtAu^+$ and Pt^+ is that only the former effects equilibration of the hydrogen atoms provided by the carbene fragment and NH₃.

In conclusion, our experiments indicate that $PtAu^+$ mediates C–N bond coupling of CH_4 and NH_3 . This might point to possible potential of Au as cocatalyst in the Degussa process. More generally, $PtAu^+$ can serve as a model for the examination of cooperative effects in bimetallic systems.

Acknowledgment. This work was generously supported by the Degussa AG. Further, we acknowledge the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. K.K. particularly thanks the latter for a Kekulé scholarship. This paper is dedicated to Professor M. T. Reetz on the occasion of his 60th birthday.

References

- (a) Hasenberg, D.; Schmidt, L. D. J. Catal. **1986**, 97, 156. (b) Bockholt, A.; Harding, I. S.; Nix, R. M. J. Chem. Soc., Faraday Trans. **1997**, 93, 3869.
- (2) (a) Aschi, M.; Brönstrup, M.; Diefenbach, M.; Harvey, J. N.; Schröder, D.; Schwarz, H. Angew. Chem. 1998, 110, 858; Angew. Chem., Int. Ed. 1998, 37, 829. (b) Diefenbach, M.; Brönstrup, M.; Aschi, M.; Schröder, D.; Schwarz, H. J. Am. Chem. Soc. 1999, 121, 10614.
- (3) Cationic metal clusters were generated by laser desorption/-ionization with subsequent supersonic expansion⁴ and transferred into the cell of a CMS 47X FT-ICR.⁵ In the case of Pt₂⁺, the most abundant dimer with m/z = 390 (corresponding to a mixture of ¹⁹⁵Pt₂⁺, ¹⁹⁴Pt¹⁹⁶Pt⁺, and ¹⁹²Pt¹⁹⁸Pt⁺) was isolated by means of the FERETS ion-ejection protocol,⁶ whereas in the case of PtAu⁺, selection of the ¹⁹⁵Pt¹⁹⁷Au⁺ isotopomer required further efforts (see text). After thermalization with pulsed-in Ar buffer gas, reactions with the leaked-in substrates (*p*(substrate) ≈ 10⁻⁸ to 10⁻⁷ mbar) were studied at variable times. From the decline of the reactant ion and the increase of the product ions, bimolecular rate constants (estimated errors of ±30 and ±50% for the reactions with CH₄ and NH₃, respectively) were derived on the basis of the pseudo-first-order approximation. To investigate the reactions of the metal carbenes, these were produced by pulsing in CH₄ to the mass-selected and thermalized dimer ions. Indications with respect to the structure of some of the product ions were obtained from collision-induced dissociation (CID) experiments. To this end, the ions of interest were mass-selected, kinetically excited, and fragmented by collisions with Ar gas.
- (4) Engeser, M.; Weiske, T.; Schröder, D.; Schwarz, H. J. Phys. Chem. A 2003. In press.
- (5) Eller, K.; Zummack, W.; Schwarz, H. J. Am. Chem. Soc. 1990, 112, 621.
- (6) Forbes, R. A.; Laukien, F. H.; Wronka, J. Int. J. Mass Spectrom. Ion Processes 1988, 83, 23.
- (7) (a) Irikura, K. K.; Beauchamp. J. L. J. Phys. Chem. 1991, 95, 8344. (b) Zhang, X.-G.; Liyanage, R.; Armentrout, P. B. J. Am. Chem. Soc. 2001, 123, 5563.
- (8) Achatz, U.; Berg, C.; Joos, S.; Fox, B. S.; Beyer, M. K.; Niedner-Schatteburg, G.; Bonbdybey, V. E. Chem. Phys. Lett. 2000, 320, 53.
- (9) See also: Cox, D. M.; Brickman, R.; Creegan, K.; Kaldor, A. Z. Phys. D 1991, 19, 353.
- (10) Analogous separations based on distinct reactivities toward O_2 does not apply to larger $Pt_mAu_n^+$ clusters.

JA029791Q